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Abstract—Asymmctric contact problems are considered for an inhomogencous half-space whose clastic
maodulus is a power function of the depth and where the contact region is assumed to be a circle. Exact
solution of the two-dimensional integral equation involved is obtained in a closed form by means of a
special integral representation of the kernel. An expression is derived for the displacements outside the
contact region dircctly in terms of the known displacements inside the region. The casc of arbitrary loading
ouiside of a punch is discussed as an illustrative example.

1. INTRODUCTION

This paper considers a nonhomogeneous half-space z =0 whose elastic modulus is a power
function of the depth in the form, E = E,z° where E,= constant, |a| <1, and the Poisson’s
ratio v is assumed to be constant. Several types of boundary value problems have been solved
recently by different authors. The action of a concentrated force on the boundary of the
half-space was considered by Rostovtsev and Khranevskaya[l] and by Plevako[2). Certain
axisymmetric problems were solved by Puro[3] and by Popov[4]. The solution of the asym-
metric contact problem in a series form was first given by Rostovtsev[5]. An exact solution of
the same problem in a closed form is presented in this paper employing a special integral
representation of the kernel of the governing integral equation. The different properties of the
exact analytical solution obtained are investigated in a later section of this paper. An illustrative
example of an external crack in the elastic space under arbitrary pressure applied in opposing
directions of the sides of the crack is considered also.

2. FORMULATION OF THEPROBLEM AND SOLUTION

Consider the following mixed boundary-value problem for the above mentioned non-
homogeneous half-space. Inside a circle p=a certain arbitrary normal displacements
w(p, ) are prescribed, while the boundary z =0 of the half-space outside the circle is free of
stresses, and the tangential stresses vanish all over the plane z = 0. The problem is to evaluate the
normal stresses o(p, ¢) inside p = a. Many contact problems involving embedding of a cylindrical
punch of an arbitrary profile in the half-space can be reduced to such a mixed boundary-value
problem described here mathematically.

According to [5] the problem relates directly to the following integral equation given in polar
coordinates
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For simplicity, the material elastic constants are incorporated within normal stresses, so the
function o in eqn (1) is given by the quotient of the stresses and the elastic constants. It is
possible to reduce the integral equation (1) to a sequence of two Abel type integral operators
and an L-operator to be introduced later. Inverse of the above mentioned operators can be
found easily and thus the exact solution of (1) in closed form can be obtained. For this purpose
it is necessary to obtain the integral representation of the kernel given by the following
expressions:
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Here, the Fourier series expansion and the hypergeometric functions properties described in
(6] were employed. Substitution of the final expression (2) into (1) and further changing of the
order of integration, will lead to the form
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The scheme of changing of the order of integration used is explained by the identity

P [ a [ P [ [ a [ a
Idpoj dx+f dpoI dx=j de dpo+I dxj dpo=j dxf dpo.
Q 0 p 0 0 x 0 '] 1] x

The newly introduced integral operator L may now be described by
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The following important properties of L-operators can be easily verified and are
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Using these properties, one can now construct the operator inverse of the L-operator as
- 1 -
L7'(k,¢ ~ ¢o) = ﬁL(k "¢ ~ o).

Now the integral equation (3) is equivalent to (1) and represents a sequence of two Abel type
integral operators and an L-operator. As the inverse operators to all the three are known, the
following procedure will lead to the exact solution of (1) in a closed form.

Application of the operator

i |, e (0-¢)

to the both parts of (3) yields
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Both parts of the last expression may be divided by r°, and applying the following operator
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One can then obtain the expression
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Now application of the operator L(y/z,¢ — ¢,) gives the type of solution sought for the
contact problem and is
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The solution given in (6) can be simplified using the rules of differentiation under the integral
sign and the L-operator properties states in (5). This yields
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3. INVESTIGATION OF THE PROPERTIES OF THE SOLUTION

The evaluation of the resulting force P and the moments M, and M, acting on the punch as
well as the normal displacements outside the contact region are of practical interest. It will be
shown that all these parameters can be expressed in terms of the normal displacements inside
p = a by the following procedure.

Since

P=['[ " oo )p dp do, ®)

substitution of (6) into (8) yields directly the resultant force
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For computation of the moments M, and M, it is convenient to introduce the complex
parameter

COS
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Since the first harmonics of o will give the only one non-zero term after integration due to
(10), then
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Integrating by parts and changing the order of integration gives the final expression for the
resultant moment as
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It may be noted that the expressions (9) and (11) correspond to the results previously
reported in [5].

In reviewing the derivation of the expression (3) one may find that it is valid for the
evaluation of the normal displacements outside the contact region if the upper limit of
integration p is replaced by a. Now substitution of cgn (6) into adjusted form of eqn (3) results
in
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forp>a.

Performing the differentiation under the integral sign and then integrating with respect to x and
by parts yields
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Here the following identities were employed 6]
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Now the eqns (9) and (11) give the final expressions for the resulting force and moments acting
upon the punch, and expression (12) gives the values of the normal displacements outside the
contact region in terms of the known displacements inside. Expressions (9) and (12) correspond to
the results given in [7] obtained for a homogeneous half-space.

4. ILLUSTRATIVE EXAMPLE

The problem is to determine the influence of a load outside of a smooth punch on the
stresses under the punch. The boundary conditions, corresponding to the problem, are:

w=0 and 7=0 for O=p=<a, 0s=¢<27
o=0o(pd) and 7=0 for a<p<x, 0=¢<2m
The normal stresses o inside p=a and the normal displacements w outside are to be
determined as stated above.

For simplicity, consider a particular case of

a(p.d) = PoS(p — b)5(6 — $»)lp,
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which corresponds to the action of a concentrated force P, applied at a point on the boundary
with the polar coordinates b, ¢,(b > a). Here 8(-) denotes the impulse delta-function. Using
properties of 8-functions as well as eqn (3) one can obtain the following integral equation
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Details of this derivation are presented in Appendix B.
Employing the same procedures as described in Section 2 before, the following solution for
(13) can be derived to give the stress distribution and is
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Returning to the original problem of an arbitrary pressure applied at the boundary at p>a
and making use of (14), the following integral gives the complete solution.
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Expression (15) corresponds to the result obtained in a different context in{8].

The normal displacements of the boundary z =0 outside the circle p=a may then be
evaluated as a superposition of the displacements caused by the applied pressure and those
resulting from the stresses inside p = a, as determined by (15). Using a procedure analogous to
the one described in Section 2, one can obtain the expression

w(p, ¢) = —COS = {J- - X g:ﬁmuz J': x? _yyg)yma)lz L (%y!s ¢- ‘l’) a(y, ¥)
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for p>a. (16)

Substitution of (15) into the second integral of (16) leads, after simplification, to
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The details of this derivation are presented in the Appendix A. The expression (15)
determines the stresses inside the circle p = a and the normal displacements of the boundary
outside p = a are given by (17) in terms of the applied pressure.

As a simple illustration of the results obtained, a specific problem may now be considered.
Let a(p.¢) = 0, = const at the annulus b<p<c (b>a) and o(p,¢)=0 for a<b and p>c.
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For this particular case, using (15) and (17), the solutions are derived as

ki
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In general, the integrals (18) and (19) can be evaluated in terms of hypergeometric functions.
In any particular case of an isotropic body (a = 0), the integral (18) may be expressed in terms
of elementary functions

o= -2 LA (228 (5]

5. DISCUSSION

Some of the results presented may be considered as of general mathematical interest in
many mechanics problems. For example, on the basis of (12), the following theorem may be
established. That is, if a function w(p, ¢) has the integral representation (1) inside a circle p = a,
and the density o = 0 outside, then it is possible to evaluate the values of the function w(p, $)
outside the circle directly through its values inside, by using (12) without the determination of
the density o.

The second theorem may be established on the basis of the expression (15). If a function
a(p, ¢) serves as a density in the integral representation, outside p = a,

Nl (oo, $o)po dpo dpo
w(p’d’)"jofo [T+ ol = 2ppo cos (¢ — g forp >0

and the function w(p,¢) =0 inside p = q, then it is possible to evaluate the values of ¢ inside
the circle directly through its values outside using (15) derived.

Both these theorems establish a certain mathematical similarity between such physically
different parameters as stresses and displacements.

Another general relationship can be derived by multiplication of both parts of eqn (3) by
p"" ei"(a? - p?) """ and integrating with respect to p and ¢ over the circle p < a. The result is
then expressed as

1+
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One can easily notice that the expression defining the resulting force (9) and the one defining
the resulting moment (11) are particular cases of the previous relationship forn=0and n = ~ 1
respectively.
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APPENDIX A

The derivation of expression {17} in the paper is given here. For simplicity all the intermediate transformations are
performed for nth harmonics of the stresses and the displacements and the final result is obtained by summation. By eqn
(16), the following expression is valid for the ath harmonics of the displacements:

o) =4cos 22 {p* f(x_':;"" f%;;ﬁ;’,—ﬁ; f _':;"" J' 't;g’"‘} forp>a. (Al
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2y cos f (Po — a0 (o) dpo

aa{y) =~ z)u-m PR {AD

Substitution of (A2} into (A1) and integration with respect to v, yields
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Chunging the order of integration of the first term Jeads to
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and substituting the fast expression into the previous one resulls in
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Changing the order of integration by the scheme
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and substituting the result in {A3) leads, after simplification, to the form
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Since w{p. ¢)= L walp)e™, summation of (Ad) gives the final result (17).
Am—w
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APPENDIX B

The details of the derivation of eqn (13) are presented here. If arbitrary normal stresses a(p.¢) are prescribed inside a
circle p = ¢, then the normal displacements, produced by those stresses, are given by (3) as

J2ma [t xtdx fC pede (X
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In the particular case of a normal concentrated force Py, applied at a point with the polar coordinates b, éu(c > b > a), the
given stresses may then be presented as

alp.¢) = Pad(p— b)3(d — dn)lp. (BY)

Here 8(+) denotes the impulse delta-function. The substitution of (B2) into (B1) results in

_2P|) e [° %% dx ___X_z i(6~dy) -t _-_‘E ~il4-dy) —l__
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Here the integral representation of the L-operator (4) and the following fundamental property of the delta-function were
employed.

b
f fx)d(x - y)dx = f(y), (asy<hbh) (B4)

In the example, considered in Section 4, the normal displacements inside the circle p = a should be zero, therefore. the
normal stresses inside the circle should provide the normal displacements equal and opposite to the ones defined by (B3).
Now substitution of (G3) with opposite sign into (3) immediately gives (13).



